콘텐츠로 바로 가기
MathWorks

자기 주도형 온라인 교육

  • Self-Paced Content
  • MathWorks
  • MATLAB 도움말 센터
  • 커뮤니티
  • 학습
  • MATLAB 받기 MATLAB
  • 로그인
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결

    • 로그아웃
  • MathWorks 지원 요청하기
  • Visit mathworks.com
  • Online Courses
MathWorks MathWorks

웹사이트 선택

번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:

  • (English)
  • (Deutsch)
  • (Français)
  • (简体中文)
  • (English)

또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.

사이트 성능 최적화 방법

최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.

미주

  • América Latina (Español)
  • Canada (English)
  • United States (English)

유럽

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

아시아 태평양

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文
    • English
  • 日本 (日本語)
  • 한국 (한국어)

지역별 지사에 문의

image for course 딥러닝을 사용한 신호 분할

딥러닝을 사용한 신호 분할

sequence-to-sequence 워크플로를 사용하여 신호를 분할하는 방법을 배워 신호 분류 역량을 키울 수 있습니다. 심층 신경망을 사용하여 전체 신호에 대한 하나의 클래스로 분류하는 대신 신호의 각 시간 스텝별로 분류할 수 있습니다. 신호 내 영역에 레이블을 지정하고 영역을 시각화한 다음 훈련 과정을 조정하여 클래스 시퀀스를 출력하는 방법을 알아볼 수 있습니다.

교육과정 모듈

Introduction

Get an overview of the course.

강의 내용:
  • Course Overview
  • Outline and Learning Outcomes
  • Course Example: Classify Regions of Flooding Levels

Label Regions of Interest

Learn two different ways to label time steps in a signal. Label time steps in a signal by importing a sequence of labels from a file and using the Signal Labeler app.

강의 내용:
  • Use Labels from a File
  • Walkthrough of Signal Labeler
  • Use Signal Labeler
  • Use Labels from Signal Labeler

Classify Each Time Step of Signal Data

Create a deep network architecture that can classify one label for each time step of a signal. Train and evaluate a deep network using specialized visualizations.

강의 내용:
  • Create Sequence-to-Sequence Architecture
  • Train a Sequence-to-Sequence Classification Network
  • View Misclassified Regions

Conclusion

Learn next steps and give feedback on the course.

강의 내용:
  • Summary
  • Additional Resources
  • Survey

형식:자기 주도형

언어:한국어

언어

  • 자동화된 피드백이 제공되는 실습 연습문제
  • 웹 브라우저를 통해 MATLAB 이용
  • 공유 가능한 진도 보고서 및 교육과정 수료증

Signal Processing Onramp

스펙트럼 분석을 위한 신호 처리 방법을 대화형 방식으로 소개합니다.

Machine Learning Onramp

분류 문제에 대한 실용적인 머신러닝 방법의 기본 사항을 학습할 수 있습니다.

딥러닝을 사용한 신호 분류

심층 신경망으로 신호를 분류하기 위한 워크플로를 알아볼 수 있습니다.

  • 신뢰 센터
  • 등록 상표
  • 개인정보 취급방침
  • 불법 복제 방지
  • 애플리케이션 상태
  • 문의하기

© 1994-2025 The MathWorks, Inc.